Session/Séance 4g: MusCan Panel 1 Harmonic Function

Session/Séance 4g: MusCan Panel 1 Friday/vendredi 26 May 2017. 9:00AM-10:30AM, EJB 217.
Harmonic Function
     Chair: ROBERT A. BAKER (Catholic University of America)

1. Harmonic Function in Rock: A Scale-Degree Approach
     Mark Richards, Florida State University

Theorists have tended to view harmonic function in rock as so radically different from that of the common practice that it necessitates a theory founded on completely different terms, as in Quinn and White 2015, Nobile 2014, and Doll 2007. This paper counters that a scale-degree approach to function adapted from Harrison 1994 illustrates how the traditional functions of Tonic, Subdominant, and Dominant operate in rock, even in progressions that are atypical of the common practice. Since many of these progressions involve the submediant and mediant chords, this paper will focus on them, identifying four means by which they express function: agent discharge, the rule of fifths, activation, and association. This scale-degree approach demonstrates that, no matter how different rock’s syntax may seem from that of the common practice, understanding harmonic function in rock necessitates only a recalibration of an established set of tools rather than an altogether novel one.

2. Harmonic Polysemy Through Linear Displacement in Late 19th-Century Chromatic Tonality
     Kyle Hutchinson, University of Toronto

While root and quality – traditionally-valued elements for identifying harmonic function – are valuable in approaching what McCreless (1982) terms “classical tonality,” fixating exclusively on these two dimensions impedes the analysis of late nineteenth-century chromatic tonality. Root and quality are often prioritized at the expense of other elements, such as behaviour and context, which play pivotal roles in determining harmonic function in chromatic tonality. This paper argues that an as-yet unrecognized harmonic polysemy is operative in chromatic tonality, resulting when harmonic dimensions conflict under the precedents of classical tonality. The linguistic term polysemy describes words with multiple possible meanings, such as ‘bank.’ I adopt the term harmonic polysemy to describe the property whereby chords have the potential to function in multiple ways within the same context, defined here as a key (V7/♭II and the Ger6, for example). I contend that understanding chromatic tonality as an extension of classical precedents necessitates acknowledging the polysemic potential of conventional chords based on their contextual behaviour, not their vertical structures, and theorizing harmonic extensions to account for such idiosyncrasies. My examples, drawn from late nineteenth and early twentieth-century repertoire, elucidate instances of harmonic polysemy derived through the displacement of linear phenomena: unresolved 6–5 suspensions, unresolved 6/4 dissonances, and the displacement of chromatic passing tones to sound simultaneously with the chord form the diatonic precedents from which I derive harmonic extensions. I conclude that despite the more recent focus on non-tonal approaches to chromaticism, harmonic syntax remains a largely unexplored and under-developed area of chromatic tonality.

3. L’Autre dominante: La Sous-dominante comme fiction scientifique dans la théorie musical avant et après Riemann
     Mary Blake Bonn, Western University

Un canard reflété dans un lac est à la fois symétrique et asymétrique. Même s’ils ont l’air d’être identiques, le canard et sa réflexion sont inégaux parce que celle-ci dépend sur celui-là. Un analogue musical de cette relation est celle qui existe entre la dominante et la sous-dominante. Dans les théories d’harmonie, nous considérons souvent la sousdominante comme étant égale à la dominante. L’idéal du rapport symétrique entre ces deux accords est particulièrement important dans l’œuvre de Hugo Riemann. En suivant Alexander Rehding (2003), je considère la sous-dominante de Riemann comme fiction scientifique : un béquille logique qui est utile, mais qui n’est pas vrai. Je suis les racines de la sous-dominante de Riemann, et ses ramifications pour les théories musicale qui suivront, en me servant de l’idée de la fiction scientifique. Je commence avec Jean-Philippe Rameau, Moritz Hauptmann et Arthur von Oettingen, passant après à Riemann lui-même. J’explore ensuite le rôle de la sousdominante et la pensée Riemannienne dans les théories plus récentes de Daniel Harrison et David Lewin. La fiction des dominantes symétriques nous invite d’entrer dans une réalité où les objets et leurs réflexions—les canards et les sous-canards— se réfèrent de façon réciproque. Des grands développements dans la théorie harmonique ont eu lieu dans cette réalité. Mon discours aborde donc la fiction scientifique d’un espace tonal symétrique et les opportunités que cette fiction a créées pour la théorie musicale du vingtième siècle et d’aujourd’hui.

 

 

Friday Schedule | Programme - vendredi
(Sessions 4 & 5 | Séances 4 & 5)

MusCan Office

MusCan is led by a committed community of volunteers from across Canada. You can contact our secretariat by mail, phone, or email.

10 Morrow Avenue, Suite 202
Toronto, ON
M6R 2J1
Canada
416-538-1650
office [AT] muscan.org